Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Geophys Res Lett ; 47(17): e2020GL089269, 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-1931317

ABSTRACT

TROPOMI satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes to NO x emissions changes over short timescales, one must account for meteorology. We find that meteorological patterns were especially favorable for low NO2 in much of the United States in spring 2020, complicating comparisons with spring 2019. Meteorological variations between years can cause column NO2 differences of ~15% over monthly timescales. After accounting for solar angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2% and 43.4% among 20 cities in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in each city.

2.
Atmospheric Chemistry and Physics ; 22(6):4201-4236, 2022.
Article in English | ProQuest Central | ID: covidwho-1771559

ABSTRACT

The COVID-19 lockdown had a large impact on anthropogenic emissions of air pollutants and particularly on nitrogen dioxide (NO2). While the overall NO2 decline over some large cities is well-established, understanding the details remains a challenge since multiple source categories contribute. In this study, a new method of isolation of three components (background NO2, NO2 from urban sources, and NO2 from industrial point sources) is applied to estimate the impact of the COVID-19 lockdown on each of them. The approach is based on fitting satellite data by a statistical model with empirical plume dispersion functions driven by a meteorological reanalysis. Population density and surface elevation data as well as coordinates of industrial sources were used in the analysis. The tropospheric NO2 vertical column density (VCD) values measured by the Tropospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor over 261 urban areas for the period from 16 March to 15 June 2020 were compared with the average VCD values for the same period in 2018 and 2019. While the background NO2 component remained almost unchanged, the urban NO2 component declined by -18 % to -28 % over most regions. India, South America, and a part of Europe (particularly, Italy, France, and Spain) demonstrated a-40 % to -50 % urban emission decline. In contrast, the decline over urban areas in China, where the lockdown was over during the analysed period, was, on average, only -4.4±8 %. Emissions from large industrial sources in the analysed urban areas varied greatly from region to region from -4.8±6 % for China to -40±10 % for India. Estimated changes in urban emissions are correlated with changes in Google mobility data (the correlation coefficient is 0.62) confirming that changes in traffic were one of the key elements in the decline in urban NO2 emissions. No correlation was found between changes in background NO2 and Google mobility data. On the global scale, the background and urban components were remarkably stable in 2018, 2019, and 2021, with averages of all analysed areas all being within ±2.5 % and suggesting that there were no substantial drifts or shifts in TROPOMI data. The 2020 data are clearly an outlier: in 2020, the mean background component for all analysed areas (without China) was -6.0%±1.2 % and the mean urban component was -26.7±2.6 % or 20σ below the baseline level from the other years.

3.
Nature ; 601(7893): 380-387, 2022 01.
Article in English | MEDLINE | ID: covidwho-1631307

ABSTRACT

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely affect human health1-9. A decrease in NO2 concentrations has been reported as a result of lockdown measures to reduce the spread of COVID-1910-20. Questions remain, however, regarding the relationship of satellite-derived atmospheric column NO2 data with health-relevant ambient ground-level concentrations, and the representativeness of limited ground-based monitoring data for global assessment. Here we derive spatially resolved, global ground-level NO2 concentrations from NO2 column densities observed by the TROPOMI satellite instrument at sufficiently fine resolution (approximately one kilometre) to allow assessment of individual cities during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to quantify NO2 changes in more than 200 cities, including 65 cities without available ground monitoring, largely in lower-income regions. Mean country-level population-weighted NO2 concentrations are 29% ± 3% lower in countries with strict lockdown conditions than in those without. Relative to long-term trends, NO2 decreases during COVID-19 lockdowns exceed recent Ozone Monitoring Instrument (OMI)-derived year-to-year decreases from emission controls, comparable to 15 ± 4 years of reductions globally. Our case studies indicate that the sensitivity of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially resolved observational information provided by these satellite-derived surface concentration estimates.


Subject(s)
Atmosphere/chemistry , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/statistics & numerical data , Environmental Indicators , Nitrogen Dioxide/analysis , Altitude , Humans , Ozone/analysis , Quarantine/statistics & numerical data , Satellite Imagery , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL